
The influence of washing machine-leg hardness on its
dynamics response within component-mode synthesis

techniques
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Abstract

In this paper, we investigate a washing machine’s dynamic response.
Using an experimental modal analysis, the dependence of the first two nat-
ural frequencies on the hardness of leg rubber is demonstrated. In order
to model this behaviour, a complete washing-machine numerical model is
developed, including a detailed model of the leg. A simple linear leg model
is proposed, which accounts for the contact conditions and enables an im-
plicit analysis. The model is validated, based on two measurements with
different leg configurations. Additionally, the component-mode synthesis
methods are proposed. They allow separate treatment of the washing ma-
chine’s legs and cabinet, as well as reducing the model order. The four
model-reduction techniques are compared with the classic finite-element
method. It is shown that the component-mode synthesis methods enable
fast recalculation times for the modified substructures, while the remain-
ing structure is calculated only once. This leads to a computationally
efficient analysis. A comparison of the results shows good agreement
between the component-mode synthesis methods and the classic finite-
element method.

1 Introduction

The design and research of home-appliance products focuses not only on effi-
ciency and performance, but also on quiet and user-friendly products. One of
the best-known sources of household noise and vibration is the washing machine.
The scientific community and industry have carried out several studies related
to modelling and reducing noise and vibration. Türkay et al. [25] presented
formulations and implementations for the optimisation of a suspension design.
In [17] Jakšič et al. studied the theoretical aspects of a planar, non-linear, cen-
trifugally excited, oscillatory system in its steady-state domain. The theoretical
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approach was verified experimentally on complex washing-machine dynamics by
Boltežar et al. [6]. Conrad and Soedel [9] studied the influence of weight reduc-
tion on the walking stability of a washing machine, Chen et al. [7] researched
stability of a vertical axis washing machine with a hydraulic balancer, Chen et
al. [8] studied the steady-state response using a new approach and a method
for getting a smaller deflection angle and Bae et al. [3] made dynamic analysis
of an automatic washing machine with a hydraulic balancer. An analysis of
the sound quality due to impacts is presented in [18], while velocity control is
studied in [5].

The washing machine is a complex system; therefore, advanced numerical
methods must be applied to model the system dynamics. Classically, the anal-
ysis is performed with the use of the finite-element method (FEM), where the
model is represented by a dense mesh with a large number of degrees of freedom
(DOF). Here, an alternative to the classic finite-element analysis is presented by
applying substructuring techniques, which consist of a model reduction and a
substructure assembly, also known as Component-Mode Synthesis. The model-
reduction techniques were first introduced in 1965, when the Guayan method
was presented [16]. Soon after the Craig Bampton [10] (1968), MacNeal [19]
(1971), Rubin[24] (1975) and Craig-Chang methods [11] (1977) followed. Note
that the Craig-Chang and Rubin methods have the same reduced equations of
motion, but with a different derivation procedure. A more recent method is the
Dual Craig-Bampton method [23] (2004). These methods make it possible to re-
duce the model order and the assembly of substructures. The substructures can
be analysed independently of the remaining structure. Moreover, the techniques
also allow a quick re-analysis of the modifications. The model reduction reduces
the system matrices and therefore allows faster computations, especially when a
transient response (i.e., time integration) is required. These advantages are par-
ticularly useful when large models are analysed and only certain subcomponents
are changing in the model.

In this paper a structural model of a washing machine with a detailed model
of the legs is presented. A new, numerical model of the leg structure is proposed
that accounts for the deformations as well as the contact conditions. The model
is based on the rubber-metal contact formulation presented by Medina et. al.
[20], which presents the influence of the material properties and the contact
area on the tangential stiffness. For practical reasons a measurement of the
contact area is not always possible, and it is demonstrated in this paper that
the tangential stiffness can also be obtained through a single measurement of
the modal parameters. The presented approach introduces the so-called shear
modulus correction factor kcorr that is calculated based on minimizing the dif-
ference between the corresponding measured and numerically obtained natural
frequencies of the whole washing-machine structure. It is demonstrated that
the proposed identification process for the shear modulus correction factor is
reliable and accurate and may be applied to leg structures with different rub-
ber hardnesses. Due to the nature of the problem, where a small leg model
is of interest and the rest of the structure remains unchanged, substructuring
techniques are proposed to analyse these modifications. In this paper four sub-
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structuring techniques are used and compared with the results obtained using
the classic finite-element method. Finally, the numerical model is validated
experimentally.

The article is organised as follows. The second section presents the numer-
ical model of the leg and the obtained results with the classic finite-element
method. The third section presents a determination of the leg parameters and
the experimental validation of the numerical model. In the fourth section the
four substructuring techniques are presented and the comparison with the FEM
method is made. In the last section a summary and the contributions are pre-
sented.

2 Numerical model

The numerical model of the washing machine is presented in Figure 1. It con-
sists of a mesh of 3D solid (SOLID45) and 2D shell (SHELL181) elements and
is constructed in a classic FEM manner. The cover and legs consist of solid
elements, while the cabinet is modelled using shell elements.

Figure 1: Numerical model

The legs are treated in more detail, because of their impact on the system
dynamics, most importantly the position of the first and the second natural
frequency. The legs consist of a bolt with a nut, a rubber foot and a steel end
(Figure 2). The legs differ in terms of the shape of the feet and the material,
which is usually rubber. In operation they are mainly exposed to shear strain
where the contact between the rubber feet and the ground has to be accounted
for. The development of a detailed leg model represents a complex task as
the friction conditions (static friction), the large deformations and the damping
have to be accounted for. Thus, a simpler linear leg model is proposed, which
includes the deformations as well as the friction conditions. It enables an implicit
analysis and in this way the computation of the modal parameters. The model
is defined as a bolt with a nut (solid elements), a steel end (solid elements), a
rubber foot (solid elements) and the ground (Figure 3). The coupling conditions
between the leg and the cabinet as well as the ground are modelled using fully
constrained DoFs.

3



Figure 2: Waschine maschine’s leg.

As shown by Medina et. al. [16] the modelling of rough elastic contacts can
be expressed in terms of the tangential stiffness:

kT =
4E

(1 + ν) (2− ν)

∑
i

ai =
8G

(2− ν)

∑
i

ai, (1)

where ν is the Poisson’s ratio, E is the Young’s modulus and ai is the radius of
the contact patch, defined by:

ai =

(
3PiRi
4E∗

) 1
3

, (2)

where Pi represents the normal load carried by an asperity i, Ri is the radius of
curvature of the asperity i and E∗ is the expression for the equivalent modulus
of the contacting surfaces:

E∗ =

[
1− ν21
E1

+
1− ν22
E2

]−1
, (3)

where ν is the Poisson’s ratio and E the Young’s modulus of the materials in
contact and the subscripts refer to each of the contacting bodies. If one of the
bodies is assumed to be rigid, Eq. (3) simplifies to:

E∗ =
E

1− ν2
. (4)

However, we can write ∑
i

ai = na, (5)

where n is the number of asperities in contact and a is the mean radius of the
asperity contact. They assume that the asperity heights are distributed nor-
mally with a standard deviation of σ and have a constant radius of curvature R.
Under these conditions, they demonstrate that a is approximately independent
of the normal load, whereas n is proportional to it. According to the analyt-
ical model [20], the elastic modulus and asperity radius should influence the
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contact area and the number of asperities, but have no direct influence on tan-
gential stiffness when exposed to low pressures. When analysing different elastic
materials with the same Poisson’s ratio ν and an assumed equal contact area∑
ai, a linear dependence of tangential stiffness and shear modulus is observed.

In this paper this assumption is adopted by introducing the correction factor
kcorr, which models the tangential stiffness without measuring the contact area.
The correction factor is determined based on the value of the first two natural
frequencies of the whole washing machine structure. In order to simulate the
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Figure 3: Numerical model of a leg.

leg behaviour, orthotropic material properties are proposed for the rubber foot.
The rubber foot is described by the rubber’s elastic modulus E and the shear
modulus G. The elastic modulus is evaluated experimentally, while the shear
modulus is computed as:

G =
E

2 (1 + ν)
(6)

where ν is the Poissons’s ratio. The shear moduli for all three planes are defined
as:

Gxy = G/kcorr
Gxz = G
Gyz = G/kcorr

(7)

where kcorr is a shear-modulus correction factor and is determined experimen-
tally. It simply simulates the rubber-metal (ground) contact conditions in the
xy and yz directions, accounting for static friction conditions, which are in gen-
eral difficult to model. Hence, the assumption of orthotropic material properties
allows the modelling of complex contact conditions in the form of a simple linear
model. The linear assumption is valid due to small deformations of the rubber
feet during operation and due to the assumption of an equal contact area

∑
ai

[20]. The procedure is similar as in [22], where the friction contacts between
laminas in laminated structures were modelled.

In the next section the algorithm to obtain the properties of the rubber foot
material and the validation of the numerical model are presented.

5



3 The determination of leg’s material parame-
ters and the validation of the numerical model

The numerical model of the leg is validated in the first stage with an experiment.
The experimental set-up enabled a measurement of the natural frequencies and
the corresponding mode shapes with the experimental modal analysis (EMA).
The washing machine was positioned on steel plate in a closed environment with
a temperature of 25◦C. The measurements of the washing machine’s dynamic
properties were made on a non-operating machine with an impact hammer and
a roving 3-axial piezoelectric accelerometer at 364 points on the cabinet (Figure
4). The sampling rate was set to 25600 samples per second, while the window
length was 102400 samples. The measurements were made with OpenModal
software [2]. Note, that when the washing machine is in operation, the position
of the natural frequencies remains constant. This enables the use of a numerical
model in the operating and non-operating mode, unless the legs start to lose
contact with the ground. In this case model updating of the reduced leg model
is required in order to represent the changing boundary conditions.

Figure 4: Experimental setup

Two measurements were conducted with different leg configurations in terms
of the hardness of the rubber feet [1]: Shore 70A and Shore 85A.

From the measured natural frequencies and their corresponding mode shapes
it was observed that the first and second natural frequencies strongly depend
on the leg’s stiffness (Figures 5a and 5b).

The first mode shape represents the forward-backward swinging of the wash-
ing machine and the second mode shape represents the left-right swinging due
to deformations of the legs. The stiffness of the rubber leg material directly
influences the swinging motion and therefore alters the first two natural fre-
quencies. At higher frequencies this influence is considerably smaller. Hence,
the shear correction factor kcorr describes, in a simple way, the deformations
and friction conditions between the ground, the rubber and the steel end. It is
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(a) (b)

Figure 5: Washing-machine mode shapes; a) First mode shape, b) Second mode
shape.

determined by an optimisation process, minimizing the following expression:

|fnum,1(kcorr)− fexp,1| < ε (8)

where fnum,1(kcorr) is the first numerical natural frequency, which depends
on the shear-modulus correction factor kcorr, and fexp,1 is the first experimental
natural frequency. The optimisation process is complete when the numerical and
measured natural frequencies overlap within an allowed tolerance ε.

Here, the first configuration with the leg rubber hardness of the Shore 70A
served as reference to obtain the shear-modulus correction factor kcorr and there-
fore to define the orthotropic material properties of the rubber feet. Based on
a measurement the shear correction factor was computed to be kcorr = 2.7.
Once the shear correction factor was obtained, the shear modulus Gyz for legs
with the rubber hardness of the Shore 85A could be predicted. The material
parameters used to compute the modal parameters are given in Table 1.

The comparison of the numerical (FEM) and the experimental natural fre-
quencies (Table 2), for the Shore 70A leg rubber hardness shows good agreement.
This confirms the appropriateness of the procedure to determine the rubber’s
shear modulus. The second measurement, with the Shore 85A leg rubber hard-
ness, served for a validation of the leg’s numerical model, since the correction
factor was already determined from the first measurement (Shore 70A). Based
on the correction factor kcorr and the rubber’s elastic modulus E, the obtained
natural frequencies show a good agreement with the results obtained using the
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Table 1: Leg material properties.

Shore 70A Shore 85A

E [MPa] 2.00 2.31
ν 0.33 0.33

G = Gxz [MPa] 0.73 0.88
Gyz = Gxy = G/2.7 [MPa] 0.27 0.33

EMA. Note that some natural frequencies could not be detected experimentally,
since they could not be excited.

Table 2: Numerical and experimental washing-machine natural frequencies in
the 0-100 Hz range with a relative error for two different leg-rubber hardnesses.

Shore 70A Shore 85A

# FEM [Hz] Exp. [Hz] Rel. Err. [%] FEM [Hz] Exp. [Hz] Rel. Err.[%]

1 29.538 29.6 0.209 31.303 31.5 0.625
2 35.274 35.3 0.0737 36.846 36.7 0.398
3 44.691 44.2 1.111 44.723 44.2 1.183
4 53.188 53.6 0.769 53.280 54.5 2.239
5 56.633 56.5 0.235 59.281 56.5 4.922
6 60.213 / / 60.299 / /
7 61.216 61.4 0.300 61.997 61.4 0.972
8 66.771 65.7 1.630 67.461 66.5 1.445

/ 71.1 / / 70.2 /
9 78.446 78.7 0.323 78.540 78.8 0.330

10 81.373 / / 82.973 / /
11 82.877 / / 83.151 / /
12 83.891 / / 84.177 / /
13 84.706 85.1 0.463 84.927 85.8 1.017
14 88.145 / / 88.554 / /
15 89.782 / / 89.782 / /
16 95.657 93.5 2.307 97.874 95.0 3.025

When changing the first natural frequency by 2 Hz or 120 rpm, the operating
range also changes. In our case the first natural frequency is around 29.6 Hz or
1776 rpm, which is near the maximum operating speed of 1600. Hence, if the
first natural frequency is increased by 120 rpm, the system dynamic response
decreases, which results in lower noise and vibration.

The analysis of the whole washing machine is a complex task. However,
since only the leg model is changing, the substructuring techniques offer an
alternative way to predict the dynamic response of such systems.
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4 Substructuring techniques

The classic finite-element approach requires a large number of nodes (elements),
which leads to large models and long computation times. In order to reduce the
time a coarser mesh needs to be applied, which is not always possible due to
the convergence of the solution. A possible alternative is the model-reduction
techniques applied to substructures with a final assembly. This is known as
component-mode synthesis. The two main advantages are the reduced number
of degrees of freedom (DOF) and the possibility to recompute only the changing
substructure (i.e. legs). Another advantage is the use of reduced models in the
explicit analysis, for instance the simulation of the washing machine’s start-up.

For these reasons the washing machine and the four legs are treated as
substructures. Overall, the model is defined by 231 402 DOF, where the four
legs have 3144 DOF and the rest of the structure consists of 228258 DOF.

4.1 Model reduction

Model reduction retains the dense finite-element mesh, but replaces the physical
degrees of freedom by a much smaller set of generalized degrees of freedom. This
is done by modal superposition and truncation.

In our case four different model-reduction methods are used: the Craig-
Bampton [10], the Rubin [24], the MacNeal [19] and the Dual Craig-Bampton
[23]. A good overall step-by-step description of the methods can be found in
[26]. The methods consist of a reduction basis containing static and a limited
number of vibration modes. The static modes can be further divided into the
constraint, attachment and residual attachment modes. The vibration modes
are divided into the free-interface, rigid-body and fixed-interface modes. A
detailed description of the above-mentioned modes is found in [26], [15] and
[13].

The model-reduction techniques are closely connected to the substructuring
field, where a substructure dynamical model is defined as:

M(s) ü(s)(t) + C(s) u̇(s)(t) + K(s) u(s)(t) = f(s)(t) + g(s)(t), (9)

The matrices M(s), C(s) and K(s) represent the mass, damping and stiffness
matrix of a substructure s, u(s)(t) is the displacement vector, f(s) is the external
excitation vector and g(s) is the vector of connection forces with the surrounding
substructures.

4.1.1 Craig-Bampton method

The Craig-Bampton method [10] divides the physical DOF u into the internal
ui and the boundary DOF ub, which gives Eq. (9) the following shape:[

Mii Mib

Mbi Mbb

]{
üi
üb

}
+

[
Kii Kib

Kbi Kbb

]{
ui
ub

}
=

{
fi
fb

}
+

{
gi
gb

}
, (10)
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where the index i denotes the internal DOF and b the boundary DOF. Note
that the internal excitation forces gi are assumed to be 0, since there is no
contact with the neighbouring substructures.

The internal DOF are approximated as:

ui ≈ Ψc ub + Φi ηi (11)

Here, Ψc are the static constraint modes and Φi are a reduced set of fixed
interface vibration modes with the corresponding modal DOF ηi. Hence, the
reduction basis is the following:{

ui
ub

}
≈
[

Φi Ψc

0 I

]{
ηi
ub

}
= RCB qCB (12)

If Eq. (12) is inserted into Eq. (10) and the orthogonality between the vi-
bration modes with respect to the mass or stiffness matrix [15] is taken into
account, the following reduced equations of motion are obtained:[

I Mφb

Mbφ M̃bb

]{
η̈i
üb

}
+

[
Ω2
i 0

0 K̃bb

]{
ηi
ub

}
=

{
f̃i
f̃b

}
+

{
0
gb

}
, (13)

where:

K̃bb = Kbb −Kbi K
−1
ii Kib

M̃bb = Mbb −Mbi K
−1
ii Kib −Kbi K

−1
ii Mib + Kbi K

−1
ii Mii K

−1
ii Kib =

= Mbb −Mbi Ψc −ΨT
c Mib + ΨT

c Mii Ψc

Mφb = ΦT
i (Mib −Mii K

−1
ii Kib)

Mbφ = MT
φb

f̃i = ΦT
i fi

f̃b = fb −Kbi K
−1
ii fi = ΨT

c fi
(14)

Here, Ω2
i represents a diagonal matrix of squared fixed-interface frequencies

ω2
i,j .

4.1.2 Rubin and MacNeal methods

Both the Rubin [24] and MacNeal methods [19] have the same reduction ba-
sis containing free-interface modes Φf with the corresponding modal DOF ηf ,
rigid-body modes Φr with the corresponding modal DOF ηr and residual at-
tachment modes Ψr. They approximate the displacement vector as:

u ≈ Ψr gb + Φr ηr + Φf ηf (15)

Inserting Eq. (15) into Eq. (9) and accounting for the orthogonality between
the vibration modes, the rigid-body modes and their combination [15], gives the
following form: I 0 0

0 I 0
0 0 Mr,bb


η̈r
η̈f
g̈b

+

 0 0 0

0 Ω2
f 0

0 0 Gr,bb


ηr
ηf
gb

 =


ΦT
r

ΦT
f

ΨT
r

 f +


ΦT
r

ΦT
f

ΨT
r

g

(16)
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where:
Gr,bb = ΨT

r K Ψr = A Gr AT

Kr,bb = G−1r,bb
Mr,bb = ΨT

r M Ψr

(17)

A is a boolean matrix selecting the interface DOF and Gr is the residual
flexibility matrix, which is obtained from the residual attachment modes [26, 13].
Both methods apply a second transformation in order to transform the interface
force DOF gb to the interface displacements ub. This is done by pre-multiplying
Eq. (15) by the boolean matrix A:

ub = A u = A(Ψr gb + Φr ηr + Φf ηf ) = Gr,bb gb + Φr|b ηr + Φf |b ηf (18)

which defines the second transformation as:
ηr
ηf
gb

 =

 I 0 0
0 I 0

−Kr,bb Φr|b −Kr,bb Φf |b Kr,bb

 
ηr
ηf
ub

 (19)

The Rubin method is defined by inserting Eq. (19) into Eq. (16) and the
Rubin reduced equations of motion are obtained: I + ΦT

r|b Mr Φr|b ΦT
r|b Mr Φf |b −ΦT

r|b Mr

ΦT
f |b Mr Φr|b I + ΦT

f |b Mr Φf |b −ΦT
f |b Mr

−Mr Φr|b −Mr Φf |b Mr


η̈r
η̈f
üb

+

 ΦT
r|b Kr,bb Φr|b ΦT

r|b Kr,bb Φf |b −ΦT
r|b Kr,bb

ΦT
f |b Kr Φr|b Ω2

f + ΦT
f |b Kr,bb Φf |b −ΦT

f |b Kr,bb

−Kr,bb Φr|b −Kr,bb Φf |b Kr,bb


ηr
ηf
ub

 =


f̃r
f̃f
f̃b

+

 0
0
gb



(20)

where:
Mr = Kr,bb Mr,bb

f̃r = (ΦT
r −ΦT

r|b Kr,bb ΨT
r )f

f̃f = (ΦT
f −ΦT

f |b Kr,bb ΨT
r )f

f̃b = Kr,bb ΨT
r f

(21)

The Rubin reduction basis can therefore be defined as follows:

{
ui
ub

}
≈
[

Φr|i −Ψr|i Kr,bb Φr|b Φf |i −Ψr|i Kr,bb Φf |b Ψr|i Kr,bb

0 0 I

]
ηr
ηf
ub

 = RR qR

(22)
The MacNeal method differs from the Rubin method in neglecting the resid-

ual mass term Mr,bb in Eq. (16). The procedure afterwards is similar, leading
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to MacNeal’s reduced equations of motion: I 0 0
0 I 0
0 0 0


η̈r
η̈f
üb

+

 ΦT
r|b Kr,bb Φr|b ΦT

r|b Kr,bb Φf |b −ΦT
r|b Kr,bb

ΦT
f |b Kr Φr|b Ω2

f + ΦT
f |b Kr,bb Φf |b −ΦT

f |b Kr,bb

−Kr,bb Φr|b −Kr,bb Φf |b Kr,bb


ηr
ηf
ub

 =


f̃r
f̃f
f̃b

+

 0
0
gb



(23)

4.1.3 Dual Craig-Bampton method

The Dual Craig-Bampton method (DCB) [23] is a newer method (2004) and uses
the same approximation basis as the Rubin and MacNeal methods in Eq. (15).
However, where the Rubin and MacNeal methods employ the second transfor-
mation, the DCB method keeps the interface forces as part of the generalized
DOF. Hence, the assembly procedure is later different compared to the other
three methods. The reduction basis is written as:{

u
gb

}
≈
[

Φr Φf Ψr

0 0 I

]
ηr
ηf
gb

 = RDCB qDCB (24)

The substructure equations of motion are written as:

[
M 0
0 0

]{
ü
g̈b

}
+

[
K −AT

−A 0

]{
u
gb

}
=

{
f
0

}
+

{
0
−ub

}
(25)

The second row in Eq. (25) is added to enforce the compatibility during
assembly. When Eq. (24) is inserted in Eq. (25) the following Dual Craig-
Bampton reduced equations of motion are obtained: I 0 0

0 I 0
0 0 Mr,bb


η̈r
η̈f
g̈b

+

 0 0 −ΦT
r|b

0 Ω2
f −ΦT

f |b
−Φr|b −Φf |b −Gr,bb


ηr
ηf
gb

 =


ΦT
r f

ΦT
f f

ΨT
r f

−
 0

0
ub


(26)

4.2 Assembly

The assembly of substructures consists of three main equations [14]:

M ü + C u̇ + K u = f + g
Bb u = 0

LTb g = 0
(27)
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where the first equation represents the assembled equation of motion and
where M, C and K are block diagonal matrices containing the (reduced) mass,
damping and stiffness matrices of the substructures. The block vectors u, f and
g contain the (reduced) substructure displacements, external and connecting
forces. They are defined as:

u =

 u(1)

...
u(n)

 (28)

The second and third equations represent the compatibility and equilibrium
conditions. The block vectors Bb and Lb contain the substructure matrices
B

(s)
b and L

(s)
b , which connect the substructure interface DOF with a global set

of interface DOF for the compatibility and equilibrium conditions. It also holds
that Lb is the nullspace of Bb. This is a useful property, which leads to the
derivation of a primal assembled system with the localized λ-method. They are
defined as:[

Mii Mib Lb
LTb Mbi LTb Mbb Lb

]{
q̈i
q̈b

}
+

[
Kii Kib Lb

LTb Kbi LTb Kbb Lb

]{
qi
qb

}
=

{
fi

LTb fb

}
(29)

where Mii, Mib = MT
bi, Mbb, Kii, Kib = KT

bi and Kbb are the block diagonal
matrices containing the substructure elements. These matrices contain the inner
i and boundary b elements of the mass and stiffness matrices. More details about
the assembly procedure can be found in [26] and [14]. This type of assembly is
sometimes referred to as a primal stiffness assembly and is used in the Craig-
Bampton, MacNeal and Rubin reduced models. The assembly procedure for
the Dual Craig Bampton reduced models is slightly different, since the coupling
is based on interface forces, and is as follows:[

Mii −Mib BT
b

−Bb Mbi Bb Mbb BT
b

]{
q̈i
λ̈

}
+

[
Kii −Kib BT

b

−Bb Kbi Bb Kbb BT
b

]{
qi
λ

}
=

{
fi

−Bb fb

}
(30)

This type of assembly is also referred to as a primal flexibility assembly
[26, 21].

4.3 Results

The comparison of the four methods is presented, where the first 20 mode shapes
from both the legs and the rest of the structure are taken. The washing machine
(without legs) is reduced from 228258 DOF to 284 DOF (20 from the interface
modes and 264 from the boundary DOF) and the legs are reduced from 786
DOF to 157 DOF (20 from the interface modes and 137 from the boundary
nodes). In total, the assembled model is reduced from 231402 DOF to 304 DOF
with the Crag-Bampton, MacNeal and Rubin methods and to 649 DOF with the
Dual Craig-Bampton method. The difference is due to the assembly procedure
(Eq. (29) and Eq. (30)). A further reduction is possible with the use of interface
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reduction [12, 4]. The comparison of the results for the four methods is given in
Table 3. The resulting relative errors compared to the FEM model are shown
in Figures 6 and 7. It is clear that the Craig-Bampton method is accurate to
within ∼ 1 % compared to the FEM method for all the modes, except for mode
15. The other three methods have a similar accuracy due to the same reduction
basis (Eq. (15) and Eq. (24)). Their accuracy is within 3.5 %, compared to the
FEM method. Note, that the MacNeal method has slightly less accurate results
due to neglected residual mass Mr,bb (Eq. (26)). The computation times needed
for the initial computation of the whole structure as well as the later re-analysis
of different legs and their assembly with the remaining structure are shown in
Table 4.

Figure 6: Shore 70A legs relative errorsFigure 7: Shore 85A legs relative errors

From Table 4 it is clear that the initial preparation times using model re-
duction techniques are longer compared to the classic FEM approach. It can be
observed that the dynamic modes are based on FEM modal analysis, which also
represents the basis for model reduction. Note that the advantage of component-
mode synthesis techniques is not to effectively perform the modal analysis of
the whole structure, but to reduce the system DOFs. This is especially the
case when explicit dynamic analyses are conducted or when recalculations of
subsystems are performed. From Table 4 it is clear that the initial preparation
times using model reduction techniques are longer compared to the classic FEM
approach. It can be observed that the dynamic modes are based on FEM modal
analysis, which also represents the basis for model reduction techniques. Note,
that the advantage of component-mode synthesis techniques is not to effectively
perform the modal analysis of the whole structure, but to reduce system DOFs.
This is especially the case whenever explicit dynamic analyses are conducted
or when recalculations of subsystems are performed. The later is shown in Ta-
ble 4, where it is demonstrated that the re-analysis of the leg structure and
the assembly with the remaining structure is ∼ 90 times faster than using the
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Table 3: Natural frequencies of the two leg configurations computed with four
model reduction methods.

Frequency [Hz]

Shore 70A Shore 85A

# CB MN R DCB CB MN R DCB

1 29.66 28.93 28.99 28.99 31.46 30.53 30.52 30.52
2 35.34 34.45 34.39 34.39 36.92 36.05 35.99 35.99
3 44.69 44.69 44.49 44.49 44.72 44.72 44.72 44.72
4 53.30 53.14 53.10 53.11 53.31 53.25 53.25 53.25
5 57.29 54.78 54.56 54.58 59.88 58.07 57.80 57.83
6 60.66 60.14 60.10 60.11 60.71 60.13 60.10 60.10
7 61.46 60.67 60.60 60.60 62.54 61.10 61.09 61.03
8 67.14 65.76 65.57 65.61 67.86 66.63 66.45 66.49
9 78.62 78.41 78.38 78.38 78.65 78.50 78.47 78.48

10 82.00 81.68 81.18 81.36 83.03 82.89 82.51 82.66
11 83.08 82.92 82.87 82.88 83.14 83.00 82.97 82.97
12 84.70 84.09 83.92 83.95 84.91 84.37 84.18 84.22
13 85.27 84.72 84.68 84.69 85.36 84.95 84.85 84.89
14 88.58 88.47 88.35 88.39 88.35 88.32 88.24 88.27
15 92.07 89.97 89.85 89.88 91.57 90.10 89.95 89.99
16 96.66 96.84 96.06 96.41 98.73 100.27 98.58 99.44

Table 4: Computation times of washing machine (WM) modal analysis, the
reanalysis of legs and their assembly with the remaining structure and with the
classical FEM approach.

Time [s]

CB MN R DCB Full model (FEM)

WM - Dynamic modes 98.201 98.545 98.545 98.545
WM - Static modes 158.955 170.098 170.098 170.098

WM - System matrices 2.331 2.467 3.012 2.373

Legs - Dynamic modes 0.082 0.155 0.155 0.155
Legs - Static modes 0.626 1.119 1.119 1.174

Legs - System matrices 0.151 0.157 0.235 0.098

Assembly 0.209 0.209 0.209 0.922

Total time (1st iteration) 260.555 272.750 273.373 274.192
Total time (reanalysis) 1.068 1.640 1.718 2.294 99.529

classic FEM approach. The fastest computation is with the Craig-Bampton
method. The Rubin, MacNeal and Dual Craig-Bampton methods have slightly
longer computation times, which is mainly due to the slightly longer computa-
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tion times necessary to obtain the static modes. Moreover, the dynamic modes
(the free-interface modes) require longer computation times compared to the
Craig-Bampton method, where the fixed-interface modes include a smaller num-
ber of DOFs. The slowest model-reduction method is the Dual Craig-Bampton
method, which is due to the slightly larger number of the reduced equations of
motion that results in longer assembly times. Note, however, that the reduction
itself is faster compared to Rubin and MacNeal methods due to simpler defi-
nition of reduced system matrices (Eq. (26)). It can also be observed that the
MacNeal method computation time is slightly faster compared to Rubin and
Dual Craig-Bampton methods, which is due to neglected mass residual term
Mr,bb in Eq. (20). It should also be stated that whenever the boundary DOFs
are changed during re-analysis the free-interface methods (MacNeal, Rubin and
Dual Craig-Bampton) are faster, since the dynamic modes (the free interface
modes) do not need to be recomputed. It can therefore be concluded that the
substructuring techniques enable rapid recalculation times and therefore effi-
cient optimisation analyses with accurate results.

5 Conclusions

An innovative numerical leg model is presented and validated experimentally.
The presented approach introduces the so-called shear modulus correction factor
kcorr that enables modelling of the contact conditions between the legs and the
ground. The modelling is based on the measured dynamical properties of the
whole washing machine structure, and therefore the measurement of the contact
area is not needed [20]. It is demonstrated that the proposed identification
process is reliable and accurate and may be applicable to leg structures with
different hardnesses. The analysis of the two leg configurations shows that the
leg stiffness increases for the first and second natural frequencies. Increasing the
first natural frequency by 2 Hz (120 rpm) can significantly reduce the vibration
and noise of the washing machine. Here it is shown that this can be achieved
with leg modifications, in particular the leg rubber hardness, which influences
the tangential stiffness of the system and therefore the system dynamics. In
addition to the classic FEM analysis, substructuring techniques are proposed,
where the legs and the cabinet are treated as substructures. This provided a
better insight into the local dynamics and their effect on the global behaviour.
In combination with the substructure assembly methods, four different model-
reduction methods show an alternative to the FE numerical analysis. They
reduce the number of degrees of freedom from ∼ 230000 to ∼ 300 and show good
matching of the natural frequencies with the FE model. The Craig-Bampton
method matches the first 16 frequencies with an error of less than 1.2 % error,
except for one frequency with a 2.5 % error, whereas the other three methods
have a slightly larger error with a maximum of 3.5 %. The assembly procedure
enables a reanalysis of the modified substructure (i.e., the legs of the washing
machine), while the remaining structure is already determined and therefore
computed only once. This offers a better management of the computation time
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and the efficiency. In addition, the substructuring techniques can be exploited
in further analyses, especially in explicit dynamics.
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